www.mikedemy.com

4.1 Further Differentiation

Question Paper

Course	CIEALevelMaths
Section	4. Differentiation
Торіс	4.1 Further Differentiation
Difficulty	Very Hard

Time allowed:	60
Score:	/45
Percentage:	/100

www.mikedemy.com

Question 1

Use an appropriate method to differentiate each of the following.

(i)
$$\tan 3x + e^{7-2x^2}$$

(ii) $(x^2 + 2x - 8)\cos(3 - x)$
(iii) $\frac{\ln 7x}{\sin(x^2+5)}$
(iv) $\sqrt{\cos 4x}$

[8 marks]

A curve has the equation $y = 3^x + 2^{-x}$.

Show that the gradient of the normal to the curve at the point $\left(1, \frac{7}{2}\right)$ is

$$\frac{2}{\ln 2 - 6 \ln 3}$$

[4 marks]

Question 3

Find the derivative of the function $f(x) = \sin\left(\cos\left(\ln\frac{1}{x}\right)\right)$, x > 0.

[4 marks]

Question 4a

(a) Show that the derivative $y = 4^{-x^4}$ is

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -(\ln 4)x^3 4^{1-x^4}$$

[4 marks]

Question 4b

(b) Hence find the equation of the tangent to the curve at the point $(1, \frac{1}{4})$, giving your answer in the form y = ax + b, where *a* and *b* are to be given as exact values.

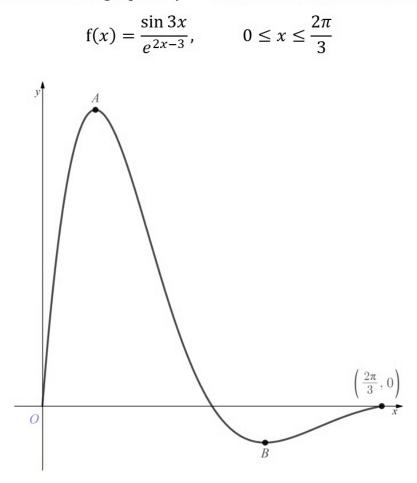
[2 marks]

Question 5a

Differentiate with respect to *x*, simplifying your answers where possible:

(a)
$$(5 + \sin^2 3x)e^{x^2 - 3x + 2}$$

[3 marks]


www.mikedemy.com

Question 5b

(b)
$$3^{\sqrt{x}} \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)$$

[3 marks]

The diagram below shows the graph of y = f(x), where f(x) is the function defined by

The points *A* and *B* are maximum and minimum points, respectively.

Find the range of f(x), giving your answer correct to 3 decimal places.

[6 marks]

A sequence of functions is defined by the recurrence relation

$$u_{k+1}(x) = \frac{d}{dx}u_k(x), \ u_1(x) = \sin(x\sqrt{2})$$

Based on that sequence, the function $f_n(x)$ is defined by

$$f_n(x) = \sum_{r=1}^n u_r(x)$$

Calculate the value of $f_{41}\left(\frac{\pi\sqrt{2}}{4}\right)$

[5 marks]

Use calculus to find the coordinates of the stationary points of the curve

$$y = \frac{x}{3} - \tan^{-1}\left(\frac{2x}{3}\right)$$

and determine whether each one is a maximum or a minimum. The coordinates should be given as exact values.

[6 marks]